Cart (Loading....) | Create Account
Close category search window
 

A Model Approach to the Estimation of Peer-to-Peer Traffic Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ke Xu ; Dept. of Comput. Sci., Tsinghua Univ., Beijing, China ; Meng Shen ; Yong Cui ; Mingjiang Ye
more authors

Peer-to-Peer (P2P) applications have witnessed an increasing popularity in recent years, which brings new challenges to network management and traffic engineering (TE). As basic input information, P2P traffic matrices are of significant importance for TE. Because of the excessively high cost of direct measurement, many studies aim to model and estimate general traffic matrices, but few focus on P2P traffic matrices. In this paper, we propose a model to estimate P2P traffic matrices in operational networks. Important factors are considered, including the number of peers, the localization ratio of P2P traffic, and the network distance. Here, the distance can be measured with AS hop counts or geographic distance. To validate our model, we evaluate its performance using traffic traces collected from both the real P2P video-on-demand (VoD) and file-sharing applications. Evaluation results show that the proposed model outperforms the other two typical models for the estimation of the general traffic matrices in several metrics, including spatial and temporal estimation errors, stability in the cases of oscillating and dynamic flows, and estimation bias. To the best of our knowledge, this is the first research on P2P traffic matrices estimation. P2P traffic matrices, derived from the model, can be applied to P2P traffic optimization and other TE fields.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 5 )

Date of Publication:

May 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.