By Topic

Correlation receivers using Laguerre filter banks for modelling narrowband ultrasonic echoes and estimating their time-of-flights

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sabatini, A.M. ; Adv. Robotics Technol. & Syst. Lab., Scuola Superiore Sant'' Anna, Pisa, Italy

A class of baseband correlation receivers is developed for estimating the time-of-flight of a narrowband signal. In contrast to conventional correlation receivers that contain a perfectly known replica of the signal, the signal shape is unknown to the proposed receiver. A parametric model of the signal envelope is therefore built, concurrently with the process of time-of-flight estimation. The identification of the model parameters can be pursued by assuming that a few signal constraints are satisfied at the time instant of signal onset: the constraints concern the value of the signal envelope and of its first time derivative. The correlation receivers perform a series expansion of the signal envelope by a set of Laguerre basis functions; the outputs of the Laguerre filter bank that computes the running Laguerre transform are used to build a parametric model of the unknown envelope and to estimate its time-of-flight. Simple variations of the correlation receivers are proposed, which differ from each other in the use they make of the signal constraints. The correlation receivers are applied to process narrowband echoes from in-air ultrasonic sensors. Potential applications are object identification and surface profiling in the robotic field. Computer simulations and experiments using a simple pulse-echo sensor system are presented.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:44 ,  Issue: 6 )