By Topic

Ab initio Study of Metal Grain Orientation-Dependent Work Function and its Impact on FinFET Variability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Agarwal, S. ; Semicond. R&D Center, IBM, Bangalore, India ; Pandey, R.K. ; Johnson, J.B. ; Dixit, A.
more authors

A novel method to model the effect of local workfunction variation in high-k metal gate nanoscale transistors is proposed. Impact of variability in metal grain granularity on device performance is studied using ab initio density functional theory calculations and device simulations, which show that different metal grain orientations (GOs) can result in large (≥100 mV) variation in metal gate effective work function. Probabilities of occurrence of each GO and the grain size are used to estimate the work-function variations. Full 3-D device simulations are performed to study the effect of metal grain granularity on FinFET and planar MOSFET behavior. Simulated mismatch trends are shown to be in good agreement with the grain diameters and device geometries.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 9 )