We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An Event-Driven Dual Coordination Mechanism for Demand Side Management of PHEVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
De Craemer, K. ; Dept. of Electr. Eng. ESAT-ELECTA, KU Leuven, Heverlee, Belgium ; Vandael, S. ; Claessens, B. ; Deconinck, G.

This paper addresses the challenges of integrating existing PHEV charging algorithms, which optimize PHEV charging per market timeslot (e.g., 15 minutes), into an environment with realistic communication conditions. To address this challenge, we propose a dual coordination mechanism, which controls a cluster of devices on two different operation levels: market operation and real-time operation. The market operation level uses an existing timeslot-based algorithm to calculate a charging schedule per timeslot. The real-time operation level translates this schedule into event-based control actions for a realistic communication environment, wherein a limited number of messages can be exchanged. A case study of 1000 PHEVs shows that it is possible to achieve results on par with the timeslot based algorithm but with significantly reduced communication with the PHEVs.

Published in:

Smart Grid, IEEE Transactions on  (Volume:5 ,  Issue: 2 )