By Topic

Cooperative Regenerating Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kenneth W. Shum ; Institute of Network Coding, The Chinese University of Hong Kong, Hong Kong ; Yuchong Hu

One of the design objectives in distributed storage system is the minimization of the data traffic during the repair of failed storage nodes. By repairing multiple failures simultaneously and cooperatively rather than successively and independently, further reduction of repair traffic is made possible. A closed-form expression of the optimal tradeoff between the repair traffic and the amount of storage in each node for cooperative repair is given. We show that the points on the tradeoff curve can be achieved by linear cooperative regenerating codes, with an explicit bound on the required finite-field size. The proof relies on a max-flow-min-cut-type theorem from combinatorial optimization for submodular flows. Two families of explicit constructions are given.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 11 )