By Topic

Intrinsic Image Decomposition Using a Sparse Representation of Reflectance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Shen ; Inst. for Infocomm Res., Singapore, Singapore ; Chuohao Yeo ; Binh-Son Hua

Intrinsic image decomposition is an important problem that targets the recovery of shading and reflectance components from a single image. While this is an ill-posed problem on its own, we propose a novel approach for intrinsic image decomposition using reflectance sparsity priors that we have developed. Our sparse representation of reflectance is based on a simple observation: Neighboring pixels with similar chromaticities usually have the same reflectance. We formalize and apply this sparsity constraint on local reflectance to construct a data-driven second-generation wavelet representation. We show that the reflectance component of natural images is sparse in this representation. We further propose and formulate a global sparse constraint on reflectance colors using the assumption that each natural image uses a small set of material colors. Using this sparse reflectance representation and the global constraint on a sparse set of reflectance colors, we formulate a constrained $(l_1)$-norm minimization problem for intrinsic image decomposition that can be solved efficiently. Our algorithm can successfully extract intrinsic images from a single image without using color models or any user interaction. Experimental results on a variety of images demonstrate the effectiveness of the proposed technique.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 12 )