By Topic

Extracting Postural Synergies for Robotic Grasping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Javier Romero ; Perceiving Syst. Dept., Max Planck Inst. for Intell. Syst., Tubingen, Germany ; Thomas Feix ; Carl Henrik Ek ; Hedvig Kjellstr√∂m
more authors

We address the problem of representing and encoding human hand motion data using nonlinear dimensionality reduction methods. We build our work on the notion of postural synergies being typically based on a linear embedding of the data. In addition to addressing the encoding of postural synergies using nonlinear methods, we relate our work to control strategies of combined reaching and grasping movements. We show the drawbacks of the (commonly made) causality assumption and propose methods that model the data as being generated from an inferred latent manifold to cope with the problem. Another important contribution is a thorough analysis of the parameters used in the employed dimensionality reduction techniques. Finally, we provide an experimental evaluation that shows how the proposed methods outperform the standard techniques, both in terms of recognition and generation of motion patterns.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 6 )