By Topic

Cloud-Based Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Saeid Abolfazli ; Dept. of Comput. Syst. & Technol., Univ. of Malaya, Kuala Lumpur, Malaysia ; Zohreh Sanaei ; Ejaz Ahmed ; Abdullah Gani
more authors

Recently, Cloud-based Mobile Augmentation (CMA) approaches have gained remarkable ground from academia and industry. CMA is the state-of-the-art mobile augmentation model that employs resource-rich clouds to increase, enhance, and optimize computing capabilities of mobile devices aiming at execution of resource-intensive mobile applications. Augmented mobile devices envision to perform extensive computations and to store big data beyond their intrinsic capabilities with least footprint and vulnerability. Researchers utilize varied cloud-based computing resources (e.g., distant clouds and nearby mobile nodes) to meet various computing requirements of mobile users. However, employing cloud-based computing resources is not a straightforward panacea. Comprehending critical factors (e.g., current state of mobile client and remote resources) that impact on augmentation process and optimum selection of cloud-based resource types are some challenges that hinder CMA adaptability. This paper comprehensively surveys the mobile augmentation domain and presents taxonomy of CMA approaches. The objectives of this study is to highlight the effects of remote resources on the quality and reliability of augmentation processes and discuss the challenges and opportunities of employing varied cloud-based resources in augmenting mobile devices. We present augmentation definition, motivation, and taxonomy of augmentation types, including traditional and cloud-based. We critically analyze the state-of-the-art CMA approaches and classify them into four groups of distant fixed, proximate fixed, proximate mobile, and hybrid to present a taxonomy. Vital decision making and performance limitation factors that influence on the adoption of CMA approaches are introduced and an exemplary decision making flowchart for future CMA approaches are presented. Impacts of CMA approaches on mobile computing is discussed and open challenges are presented as the future research directions.

Published in:

IEEE Communications Surveys & Tutorials  (Volume:16 ,  Issue: 1 )