Cart (Loading....) | Create Account
Close category search window

Fast Local Trust Region Technique for Diffusion Tensor Registration Using Exact Reorientation and Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Junning Li ; Dept. of Neurology, Univ. of California-Los Angeles, Los Angeles, CA, USA ; Yonggang Shi ; Giang Tran ; Dinov, I.
more authors

Diffusion tensor imaging is widely used in brain connectivity research. As more and more studies recruit large numbers of subjects, it is important to design registration methods which are not only theoretically rigorous, but also computationally efficient. However, the requirement of reorienting diffusion tensors complicates and considerably slows down registration procedures, due to the correlated impacts of registration forces at adjacent voxel locations. Based on the diffeomorphic Demons algorithm (Vercauteren , 2009), we propose a fast local trust region algorithm for handling inseparable registration forces for quadratic energy functions. The method guarantees that, at any time and at any voxel location, the velocity is always within its local trust region. This local regularization allows efficient calculation of the transformation update with numeric integration instead of completely solving a large linear system at every iteration. It is able to incorporate exact reorientation and regularization into the velocity optimization, and preserve the linear complexity of the diffeomorphic Demons algorithm. In an experiment with 84 diffusion tensor images involving both pair-wise and group-wise registrations, the proposed algorithm achieves better registration in comparison with other methods solving large linear systems (Yeo , 2009). At the same time, this algorithm reduces the computation time and memory demand tenfold.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:33 ,  Issue: 5 )

Date of Publication:

May 2014

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.