By Topic

Neighborhood Repulsed Metric Learning for Kinship Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jiwen Lu ; Adv. Digital Sci. Center, Singapore, Singapore ; Xiuzhuang Zhou ; Yap-Pen Tan ; Yuanyuan Shang
more authors

Kinship verification from facial images is an interesting and challenging problem in computer vision, and there are very limited attempts on tackle this problem in the literature. In this paper, we propose a new neighborhood repulsed metric learning (NRML) method for kinship verification. Motivated by the fact that interclass samples (without a kinship relation) with higher similarity usually lie in a neighborhood and are more easily misclassified than those with lower similarity, we aim to learn a distance metric under which the intraclass samples (with a kinship relation) are pulled as close as possible and interclass samples lying in a neighborhood are repulsed and pushed away as far as possible, simultaneously, such that more discriminative information can be exploited for verification. To make better use of multiple feature descriptors to extract complementary information, we further propose a multiview NRML (MNRML) method to seek a common distance metric to perform multiple feature fusion to improve the kinship verification performance. Experimental results are presented to demonstrate the efficacy of our proposed methods. Finally, we also test human ability in kinship verification from facial images and our experimental results show that our methods are comparable to that of human observers.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 2 )
Biometrics Compendium, IEEE