By Topic

Estimation With a Helper Who Knows the Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeow-Khiang Chia ; Stanford University, Stanford, CA, USA ; Rajiv Soundararajan ; Tsachy Weissman

We consider the problem of estimating a signal corrupted by independent interference with the assistance of a cost-constrained helper who knows the interference causally or noncausally. When the interference is known causally, we characterize the minimum distortion incurred in estimating the desired signal. In the noncausal case, we present a general achievable scheme for discrete memoryless systems and novel lower bounds on the distortion for the binary and Gaussian settings. Our Gaussian setting coincides with that of assisted interference suppression introduced by Grover and Sahai. Our lower bound for this setting is based on the relation recently established by Verdú between divergence and minimum mean squared error. We illustrate with a few examples that this lower bound can improve on those previously developed. Our bounds also allow us to characterize the optimal distortion in several interesting regimes. Moreover, we show that causal and noncausal estimation are not equivalent for this problem. Finally, we consider the case where the desired signal is also available at the helper. We develop new lower bounds for this setting that improve on those previously developed, and characterize the optimal distortion up to a constant multiplicative factor for some regimes of interest.

Published in:

IEEE Transactions on Information Theory  (Volume:59 ,  Issue: 11 )