By Topic

Perception-Inspired Background Subtraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haque, M. ; Gippsland Sch. of Inf. Technol., Monash Univ., Melbourne, VIC, Australia ; Murshed, M.

Developing universal and context-invariant methods is one of the hardest challenges in computer vision. Background subtraction (BS), an essential precursor in most machine vision applications used for foreground detection, is no exception. Due to overreliance on statistical observations, most BS techniques show unpredictable behavior in dynamic unconstrained scenarios in which the characteristics of the operating environment are either unknown or change drastically. To achieve superior foreground detection quality across unconstrained scenarios, we propose a new technique, called perception-inspired background subtraction (PBS), which avoids overreliance on statistical observations by making key modeling decisions based on the characteristics of human visual perception. PBS exploits the human perception-inspired confidence interval to associate an observed intensity value with another intensity value during both model learning and background-foreground classification. The concept of perception-inspired confidence interval is also used for identifying redundant samples, thus ensuring the optimal number of samples in the background model. Furthermore, PBS dynamically varies the model adaptation speed (learning rate) at pixel level based on observed scene dynamics to ensure faster adaptation of changed background regions, as well as longer retention of stationary foregrounds. Extensive experimental evaluations on a wide range of benchmark datasets validate the efficacy of PBS compared to the state of the art for unconstraint video analytics.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:23 ,  Issue: 12 )