By Topic

A Graph Derivation Based Approach for Measuring and Comparing Structural Semantics of Ontologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yinglong Ma ; Sch. of Control & Comput. Eng., North China Electr. Power Univ., Beijing, China ; Ling Liu ; Ke Lu ; Beihong Jin
more authors

Ontology reuse offers great benefits by measuring and comparing ontologies. However, the state of art approaches for measuring ontologies neglects the problems of both the polymorphism of ontology representation and the addition of implicit semantic knowledge. One way to tackle these problems is to devise a mechanism for ontology measurement that is stable, the basic criteria for automatic measurement. In this paper, we present a graph derivation representation based approach (GDR) for stable semantic measurement, which captures structural semantics of ontologies and addresses those problems that cause unstable measurement of ontologies. This paper makes three original contributions. First, we introduce and define the concept of semantic measurement and the concept of stable measurement. We present the GDR based approach, a three-phase process to transform an ontology to its GDR. Second, we formally analyze important properties of GDRs based on which stable semantic measurement and comparison can be achieved successfully. Third but not the least, we compare our GDR based approach with existing graph based methods using a dozen real world exemplar ontologies. Our experimental comparison is conducted based on nine ontology measurement entities and distance metric, which stably compares the similarity of two ontologies in terms of their GDRs.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 5 )