By Topic

A Structure-Based Distance Metric for High-Dimensional Space Exploration with Multidimensional Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lee, J.H. ; Dept. of Comput. Sci., Stony Brook Univ., Stony Brook, NY, USA ; McDonnell, K.T. ; Zelenyuk, A. ; Imre, D.
more authors

Although the euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging intercluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multidimensional scaling (MDS) where one can often observe nonintuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly in high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our biscale framework distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate euclidean distance.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:20 ,  Issue: 3 )