By Topic

Simulation and Visualization of Few-Body Systems and the Differential Precession of Mercury

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marmaras, B. ; Univ. of Massachusetts, Dartmouth, MA, USA ; Wang, J.J.

An approach investigates the applicability of a modified, symplectic leapfrog method with self-adjusted step-size control to the simulations of few-body Hamiltonian systems. The method is then applied to the direct calculation of the differential precession of Mercury due to general relativity and other planets.

Published in:

Computing in Science & Engineering  (Volume:16 ,  Issue: 1 )