By Topic

A scheduling and synchronization technique for RAPIEnet switches using edge-coloring of conflict multigraphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abbas, Syed Hayder ; National Engineering and Scientific Commission, Islamabad, Pakistan ; Hong, Seung Ho

In this paper, we present a technique for obtaining conflict-free schedules for real-time automation protocol for industrial Ethernet (RAPIEnet) switches. Mathematical model of the switch is obtained using graph theory. Initially network traffic entry and exit parts in a single RAPIEnet switch are identified, so that a bipartite conflict graph can be constructed. The obtained conflict graph is transformed to three kinds of matrices to be used as inputs for our simulation model, and selection of any of the matrix forms is application-specific. A greedy edge-coloring algorithm is used to schedule the network traffic and to solve the minimum coloring problem. After scheduling, empty slots are identified for forwarding the non real-time traffic of asynchronous devices. Finally, an algorithm for synchronizing the schedules of adjacent switches is proposed using edge-contraction and minors. All simulations were carried out using Matlab.

Published in:

Communications and Networks, Journal of  (Volume:15 ,  Issue: 3 )