By Topic

VAST: Virtually Associative Sector Translation for MLC Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jen-Wei Hsieh ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Yu-Cheng Zheng ; Yong-Sheng Peng ; Po-Hung Yeh

In recent years, multilevel cell Flash memory (MLC), which stores two or more bits per cell, has gradually replaced single-level cell flash memory due to its lower cost and higher density. However, MLC also brings new constraints, i.e., no partial programming and sequential page writes within a block, to the management. This paper proposes a virtual log-block-based hybrid-mapping scheme, referred to as virtually associative sector translation (VAST), for MLC storage systems. Unlike traditional hybrid-mapping schemes, VAST is a combination of block-level and segment-level mappings and manages log blocks in a flexible manner. The goals of our research are to avoid timeout by decreasing dummy-page writes, to get a better response time by decreasing live-page copies, and to prolong the life span of flash memory by decreasing total block erasures. Our trace-driven simulation shows that VAST could reduce up to 90% of dummy-page writes, 22%~52% of live-page copies, and 55%~83% of block erasures, compared to well-known hybrid-mapping schemes.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 8 )