By Topic

Control and Manipulation of the Dynamic Response of Interacting Spin Vortices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jain, S. ; Mater. Sci. Div., Argonne Nat. Lab., Argonne, IL, USA ; Novosad, V. ; Fradin, F.Y. ; Pearson, J.E.
more authors

A patterned mesoscale ferromagnetic disk in equilibrium can attain a flux closure vortex state with circumferential in-plane magnetization and an out-of-plane magnetic component (vortex core) at the center. When driven by a small-amplitude oscillating magnetic field or current, the vortex core gyrates around its equilibrium position experiencing resonance at a characteristic eigenfrequency. Here, we propose a resonant-spin-ordering approach for manipulating the relative vortex core polarities in coupled double-dot structures. This is achieved by driving the system to a chaotic regime of continuous core reversals and subsequently relaxing the cores to steady state motion. Any particular core polarity combination (and therefore the spectral response of the entire system) can be deterministically pre-selected by simply tuning the excitation frequency.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 7 )