Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Generalized Memristive Device SPICE Model and its Application in Circuit Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yakopcic, C. ; Univ. of Dayton, Dayton, OH, USA ; Taha, T.M. ; Subramanyam, G. ; Pino, R.E.

This paper presents a SPICE model for memristive devices. It builds on existing models and is correlated against several published device characterization data with an average error of 6.04%. When compared to existing alternatives, the proposed model can more accurately simulate a wide range of published memristors. The model is also tested in large circuits with up to 256 memristors, and was less likely to cause convergence errors when compared to other models. We show that the model can be used to study the impact of memristive device variation within a circuit. We examine the impact of nonuniformity in device state variable dynamics and conductivity on individual memristors as well as a four memristor read/write circuit. These studies show that the model can be used to predict how variation in a memristor wafer may impact circuit performance.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 8 )