By Topic

Post Copper CMP Hybrid Clean Process for Advanced BEOL Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

19 Author(s)
Wei-Tsu Tseng ; Semicond. R&D Center, IBM, Hopewell Junction, NY, USA ; Devarapalli, V. ; Steffes, J. ; Ticknor, A.
more authors

A “hybrid” post Cu CMP cleaning process that combines acidic and basic clean in sequence is developed and implemented. The new process demonstrates the strengths of both acidic and basic cleans and achieves a more than 60% reduction in CMP defects, such as polish residues, foreign materials, slurry abrasives, scratches, and hollow metal, relative to an all-basic clean process. It also eliminates the circular ring defects that occur intermittently during roller brush cleans. TXRF scans confirm the reduction of AlOx defects when using the hybrid clean process. XPS spectra show similar Cu surface oxidation states between the basic and hybrid clean processes. As revealed by XRD analysis, surface Cu oxide is dissolved into aqueous solution by the acidic clean chemical. The formation mechanism of circular ring defects and the key to their elimination is discussed.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:26 ,  Issue: 4 )