By Topic

Universal Codes From Switching Strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koolen, W.M. ; Centrum Wiskunde & Inf., Amsterdam, Netherlands ; de Rooij, S.

We discuss algorithms for combining sequential prediction strategies, a task which can be viewed as a natural generalization of the concept of universal coding. We describe a graphical language based on hidden Markov models for defining prediction strategies, and we provide both existing and new models as examples. The models include efficient, parameterless models for switching between the input strategies over time, including a model for the case where switches tend to occur in clusters, and finally a new model for the scenario where the prediction strategies have a known relationship, and where jumps are typically between strongly related ones. This last model is relevant for coding time series data where parameter drift is expected. As theoretical contributions, we introduce an interpolation construction that is useful in the development and analysis of new algorithms, and we establish a new sophisticated lemma for analyzing the individual sequence regret of parameterized models.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 11 )