By Topic

Reflectarray Design for 120-GHz Radar Application: Measurement Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Tamminen, A. ; Dept. of Radio Sci. & Eng., Aalto Univ., Espoo, Finland ; Makela, S. ; Ala-Laurinaho, J. ; Hakli, J.
more authors

In this paper, we present design and experimental results on reflectarrays at 120 GHz. The offset-fed reflectarrays consist of conductor-backed coplanar patch antennas with phase-shifting stubs. Three 138-mm reflectarrays are lithographically fabricated and evaluated in a near-field measurement range. Their measured beam patterns are compared to the theoretical ones. The theoretical -3-dB beam width is 60-64 mm at 3-m distance from the reflectarray. Measured beam widths of the different reflectarrays deviate less than 10% from the theoretical values. The beam pointing is found to be close to theoretical, whereas the sidelobe level is up to 5 dB higher. The efficiency, alignment accuracy, and surface shape of the reflectarray are studied with near-field imaging of the reflectarray aperture field. The measured average efficiency is 0.11 whereas the predicted average efficiency is 0.54. The low efficiency is most likely due to over-etching of the structures of the reflectarray element, and could be improved in future fabrication processing rounds. Beam pattern measurement close to the main beam is well suited for evaluating the beam width and pointing accuracy, but it gives little information on the element performance. We propose near-field imaging of the reflectarray to evaluate both element efficiency and phase shift.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 10 )