By Topic

A distribution-based clustering algorithm for mining in large spatial databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaowei Xu ; Munich Univ., Germany ; Ester, M. ; Kriegel, H.-P. ; Sander, J.

The problem of detecting clusters of points belonging to a spatial point process arises in many applications. In this paper, we introduce the new clustering algorithm DBCLASD (Distribution-Based Clustering of LArge Spatial Databases) to discover clusters of this type. The results of experiments demonstrate that DBCLASD, contrary to partitioning algorithms such as CLARANS (Clustering Large Applications based on RANdomized Search), discovers clusters of arbitrary shape. Furthermore, DBCLASD does not require any input parameters, in contrast to the clustering algorithm DBSCAN (Density-Based Spatial Clustering of Applications with Noise) requiring two input parameters, which may be difficult to provide for large databases. In terms of efficiency, DBCLASD is between CLARANS and DBSCAN, close to DBSCAN. Thus, the efficiency of DBCLASD on large spatial databases is very attractive when considering its nonparametric nature and its good quality for clusters of arbitrary shape

Published in:

Data Engineering, 1998. Proceedings., 14th International Conference on

Date of Conference:

23-27 Feb 1998