By Topic

Non-Data-Aided Phase Noise Suppression Scheme for CO-OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youngsun Ha ; Div. of Comput. & Commun. Eng., Korea Univ., Seoul, South Korea ; Wonzoo Chung

We propose a non-data-aided phase noise compensation technique that overcomes the limitation of the zero-overhead decision-directed (DD) phase noise suppression method in high-order constellations for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The proposed technique consists of two equalization stages. First, a blind adaptive phase offset recovery scheme based on high-order statics, called the dispersion minimization de-rotator, is applied to subcarrier symbols to achieve rough correction of the common phase error because of phase noise. Second, the conventional DD phase noise correction scheme is used to remove the residual common phase error. The proposed method effectively compensates phase noise without the help of pilot signals, especially for high-order constellation CO-OFDM systems, as confirmed by our simulation results.

Published in:

Photonics Technology Letters, IEEE  (Volume:25 ,  Issue: 17 )