By Topic

An Optimal Approximate Dynamic Programming Algorithm for Concave, Scalar Storage Problems With Vector-Valued Controls

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nascimento, J. ; Kimberly-Clark Corp., São Paulo, Brazil ; Powell, W.B.

We prove convergence of an approximate dynamic programming algorithm for a class of high-dimensional stochastic control problems linked by a scalar storage device, given a technical condition. Our problem is motivated by the problem of optimizing energy flows for a power grid supported by grid-level storage. The problem is formulated as a stochastic, dynamic program, where we estimate the value of resources in storage using a piecewise linear value function approximation. Given the technical condition, we provide a rigorous convergence proof for an approximate dynamic programming algorithm, which can capture the presence of both the amount of energy held in storage as well as other exogenous variables. Our algorithm exploits the natural concavity of the problem to avoid any need for explicit exploration policies.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 12 )