By Topic

Reduced multidimensional co-occurrence histograms in texture classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Valkealahti ; Lab. of Comput. & Inf. Sci., Helsinki Univ. of Technol., Espoo, Finland ; E. Oja

Textures are frequently described using co-occurrence histograms of gray levels at two pixels in a given relative position. Analysis of several co-occurring pixel values may benefit texture description but is impeded by the exponential growth of histogram size. To make use of multidimensional histograms, we have developed methods for their reduction. The method described here uses linear compression, dimension optimization, and vector quantization. Experiments with natural textures showed that multidimensional histograms reduced with the new method provided higher classification accuracies than the channel histograms and the wavelet packet signatures. The new method was significantly faster than our previous one

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 1 )