By Topic

Generalized queries on probabilistic context-free grammars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. V. Pynadath ; Artificial Intelligence Lab., Michigan Univ., Ann Arbor, MI, USA ; M. P. Wellman

Probabilistic context-free grammars (PCFGs) provide a simple way to represent a particular class of distributions over sentences in a context-free language. Efficient parsing algorithms for answering particular queries about a PCFG (i.e., calculating the probability of a given sentence, or finding the most likely parse) have been developed and applied to a variety of pattern-recognition problems. We extend the class of queries that can be answered in several ways: (1) allowing missing tokens in a sentence or sentence fragment, (2) supporting queries about intermediate structure, such as the presence of particular nonterminals, and (3) flexible conditioning on a variety of types of evidence. Our method works by constructing a Bayesian network to represent the distribution of parse trees induced by a given PCFG. The network structure mirrors that of the chart in a standard parser, and is generated using a similar dynamic programming approach. We present an algorithm for constructing Bayesian networks from PCFGs, and show how queries or patterns of queries on the network correspond to interesting queries on PCFGs. The network formalism also supports extensions to encode various context sensitivities within the probabilistic dependency structure

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:20 ,  Issue: 1 )