By Topic

Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Roux, S.G. ; Phys. Dept., ENS Lyon, Lyon, France ; Clausel, M. ; Vedel, B. ; Jaffard, S.
more authors

Textures in images can often be well modeled using self-similar processes while they may simultaneously display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will be first shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform with the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axes. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized; this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a nonparametric bootstrap based procedure is described, which provides confidence intervals in addition to the estimates themselves and enables us to construct an isotropy test procedure, which can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis are illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 11 )