By Topic

An Improved Auto-Calibration Algorithm Based on Sparse Bayesian Learning Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lifan Zhao ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Guoan Bi ; Lu Wang ; Haijian Zhang

This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algorithm is proposed. In this algorithm, signal and perturbation are iteratively estimated to achieve sparsity by leveraging a variational Bayesian expectation maximization technique. Results from numerical experiments have demonstrated that the proposed algorithm has achieved improvements on the accuracy of signal reconstruction.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 9 )