Cart (Loading....) | Create Account
Close category search window

PET Protection Optimization for Streaming Scalable Videos With Multiple Transmissions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruiqin Xiong ; Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing, China ; Taubman, D.S. ; Sivaraman, V.

This paper investigates priority encoding transmission (PET) protection for streaming scalably compressed video streams over erasure channels, for the scenarios where a small number of retransmissions are allowed. In principle, the optimal protection depends not only on the importance of each stream element, but also on the expected channel behavior. By formulating a collection of hypotheses concerning its own behavior in future transmissions, limited-retransmission PET (LR-PET) effectively constructs channel codes spanning multiple transmission slots and thus offers better protection efficiency than the original PET. As the number of transmission opportunities increases, the optimization for LR-PET becomes very challenging because the number of hypothetical retransmission paths increases exponentially. As a key contribution, this paper develops a method to derive the effective recovery-probability versus redundancy-rate characteristic for the LR-PET procedure with any number of transmission opportunities. This significantly accelerates the protection assignment procedure in the original LR-PET with only two transmissions, and also makes a quick and optimal protection assignment feasible for scenarios where more transmissions are possible. This paper also gives a concrete proof to the redundancy embedding property of the channel codes formed by LR-PET, which allows for a decoupled optimization for sequentially dependent source elements with convex utility-length characteristic. This essentially justifies the source-independent construction of the protection convex hull for LR-PET.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.