By Topic

A novel blind deconvolution scheme for image restoration using recursive filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kundur, D. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Hatzinakos, D.

We present a novel blind deconvolution technique for the restoration of linearly degraded images without explicit knowledge of either the original image or the point spread function. The technique applies to situations in which the scene consists of a finite support object against a uniformly black, grey, or white background. This occurs in certain types of astronomical imaging, medical imaging, and one-dimensional (1-D) gamma ray spectra processing, among others. The only information required are the nonnegativity of the true image and the support size of the original object. The restoration procedure involves recursive filtering of the blurred image to minimize a convex cost function. We prove convexity of the cost function, establish sufficient conditions to guarantee a unique solution, and examine the performance of the technique in the presence of noise. The new approach is experimentally shown to be more reliable and to have faster convergence than existing nonparametric finite support blind deconvolution methods. For situations in which the exact object support is unknown, we propose a novel support-finding algorithm

Published in:

Signal Processing, IEEE Transactions on  (Volume:46 ,  Issue: 2 )