Cart (Loading....) | Create Account
Close category search window

Determining parameters to minimize jitter generation in the SRTS method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Walker, J. ; Dept. of Electron. & Comput. Eng., Limerick Univ., Ireland ; Cantoni, Antonio

The synchronous residual time stamp (SRTS) method has been recommended by the ITU-T as one approach to the transfer of timing information for continuous bit rate (CBR) services being carried by the asynchronous transfer mode (ATM) adaptation layer 1 (AAL1) of the broadband integrated services digital network (B-ISDN). We give an overview of the SRTS method including a description of service clock recovery at the destination. On the basis of analytical expressions derived, we show that even in an ideal SRTS system, where all clocks are jitter-free, the SRTS method inherently generates jitter. We also show that this jitter is equivalent to the so-called waiting time jitter that is found in conventional timing justification techniques. In other systems where waiting time jitter is generated, parameters are chosen in order to minimize the amount of waiting time jitter produced and in which part of the spectrum it is located. We show that for the SRTS method, the choice of parameters to minimize waiting time jitter is quite restricted. For higher service clock frequencies and clocks with large tolerances, it may be impossible to choose parameters to influence the characteristics of the waiting time jitter produced

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 1 )

Date of Publication:

Jan 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.