Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Development of Innovative Application Films for Silicon Solar Cells Using a Copper–Phosphorus Alloy by an Atmospheric Sintering Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Adachi, S. ; Tsukuba Res. Lab., Hitachi Chem. Co., Ltd., Tsukuba, Japan ; Kato, T. ; Aoyagi, T. ; Naito, T.
more authors

In this paper we aim to develop copper (Cu)-based backside soldering tabs/pads for crystalline silicon (Si) solar cells using atmospheric sintering. In our previous study, we found that a Cu network can be formed in an application film (AF) by self-deoxidization when the AF consisting of copper-phosphorus (Cu-P) alloy paste is sintered in an atmospheric environment, and the Cu AF showed low electrical resistivity that satisfied the criteria for backside soldering tabs/pads. In this study, Si solar cells using Cu AF for front-side contacts were evaluated to confirm that Cu AF is applicable to Si solar cells in principle. The Cu-P alloy paste using Cu-7 mass%P particles was printed on an Si wafer and, finally, sintered at 640 °C in atmosphere. The resulting AF showed low electrical resistivity of 2.96 × 10 -5 Ωcm. The solar cell using the Cu AF and conductive glass layer had conversion efficiency (η) of 6.6%. We demonstrated the need for a barrier layer to prevent the formation of Cu 3Si compound on the Si wafer surface when applying it to Cu AF on the solar cells. Our results may improve the potential for the widespread use of an atmospheric sintered Cu AF as backside soldering tabs/pads for Si solar cells.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 4 )