By Topic

An over 10-Gb/s transmission experiment using a p-type delta-doped InGaAs-GaAs quantum-well vertical-cavity surface-emitting laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hatori, N. ; Precision & Intelligence Lab., Tokyo Inst. of Technol., Yokohama, Japan ; Mizutani, A. ; Nishiyama, N. ; Matsutani, A.
more authors

We have fabricated a p-type delta-doped InGaAs-GaAs quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) with a low-resistance GaAs-AlAs distributed Bragg reflector (DBR). The threshold was as low as 700 μA for 10×10 μm2 devices. A penalty-free 10-Gb/s transmission experiment with a 100-m-long multimode fiber was performed using fabricated VCSELs. The modulation speed was up to 12 Gb/s, which was limited by an RC constant. Further threshold reduction and high-speed operation can be expected by controlling the doping concentration in p-type delta-doped layers.

Published in:

Photonics Technology Letters, IEEE  (Volume:10 ,  Issue: 2 )