By Topic

A Memory-Efficient Scalable Architecture for Lifting-Based Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yusong Hu ; Integrated System Research Laboratory, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ; Ching Chuen Jong

In this brief, we propose a new parallel lifting-based 2-D DWT architecture with high memory efficiency and short critical path. The memory efficiency is achieved with a novel scanning method that enables tradeoff of external memory bandwidth and on-chip memory. Based on the data flow graph of the flipped lifting algorithm, processing units (PUs) are developed for maximally utilizing the inherent parallelism. With S number of PUs, the throughput can be scaled while keeping the latency constant. Compared with the best existing architecture, the proposed architecture requires less memory. For an N × N image, the proposed architecture consumes a total of only 3N + 24S words of transposition memory, temporal memory, and pipeline registers. The synthesized results in a 90-nm CMOS process show that it achieves better area-delay products than the best existing design by 32.3%, 31.5%, and 27.0% when S = 2, 4, and 8, respectively, and by 26%, 26%, and 22% when the overhead for buffering the required overlapped pixels is taken into account.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:60 ,  Issue: 8 )