By Topic

Rotation Invariant Localization of Duplicated Image Regions Based on Zernike Moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seung-Jin Ryu ; Dept. of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, Korea ; Matthias Kirchner ; Min-Jeong Lee ; Heung-Kyu Lee

This paper proposes a forensic technique to localize duplicated image regions based on Zernike moments of small image blocks. We exploit rotation invariance properties to reliably unveil duplicated regions after arbitrary rotations. We devise a novel block matching procedure based on locality sensitive hashing and reduce false positives by examining the moments' phase. A massive experimental test setup benchmarks our algorithm against state-of-the-art methods under various perspectives, examining both pixel-level localization and image-level detection performance. By taking signal characteristics into account and distinguishing between “textured” and “smooth” duplicated regions, we find that the proposed method outperforms prior art in particular when duplicated regions are smooth. Experiments indicate high robustness against JPEG compression, blurring, additive white Gaussian noise, and moderate scaling.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:8 ,  Issue: 8 )