By Topic

Predictive Control With Guaranteed Stability for Water Hammer Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thang Van Pham ; Control Syst. Dept., GIPSA-Lab., Grenoble, France ; Georges, D. ; Besancon, G.

We study the application of the receding horizon optimal control (RHOC) for hydraulic pipeline systems described by the so-called water hammer equations. Sufficient conditions to guarantee an asymptotic stability to an equilibrium state are first introduced and then integrated in the RHOC scheme. For the implementation, calculus of variations is employed to characterize the optimal solution in terms of the adjoint state and the recently proposed Lattice Boltzmann method is used to solve both direct and adjoint partial differential equations. This approach is finally validated in simulation.

Published in:

Automatic Control, IEEE Transactions on  (Volume:59 ,  Issue: 2 )