By Topic

Multilabel Classification Using Error-Correcting Codes of Hard or Soft Bits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chun-Sung Ferng ; Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan ; Hsuan-Tien Lin

We formulate a framework for applying error-correcting codes (ECCs) on multilabel classification problems. The framework treats some base learners as noisy channels and uses ECC to correct the prediction errors made by the learners. The framework immediately leads to a novel ECC-based explanation of the popular random k-label sets (RAKEL) algorithm using a simple repetition ECC. With the framework, we empirically compare a broad spectrum of off-the-shelf ECC designs for multilabel classification. The results not only demonstrate that RAKEL can be improved by applying some stronger ECC, but also show that the traditional binary relevance approach can be enhanced by learning more parity-checking labels. Our research on different ECCs also helps to understand the tradeoff between the strength of ECC and the hardness of the base learning tasks. Furthermore, we extend our research to ECC with either hard (binary) or soft (real-valued) bits by designing a novel decoder. We demonstrate that the decoder improves the performance of our framework.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:24 ,  Issue: 11 )