Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Advantages of AlGaN-Based 310-nm UV Light-Emitting Diodes With Al Content Graded AlGaN Electron Blocking Layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Yang Li ; Wuhan Nat. Lab. for Optoelectron., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Shengchang Chen ; Wu Tian ; Zhihao Wu
more authors

In order to improve the performance of deep ultraviolet light-emitting diodes (UV LEDs), the effects of different electron blocking layers (EBLs) on the performance of AlxGa1-xN-based deep UV LEDs at 310 nm have been studied through a numerical simulation. The simulation results show that the adoption of EBLs is critical to improve the device performance. In comparison with a conventional structure using EBL with constant Al composition (0.7), the device structure with an Al-content graded AlxGa1-xN (from 0.9 to 0.4 in the growth direction) EBL possesses numerous advantages such as lower working voltage, higher internal quantum efficiency, and less efficiency droop under high-current injection. By detailedly analyzing the profiles of energy band diagrams, distributions of carrier concentration, and electron current density, the advantages of Al-content graded AlxGa1-xN EBL are attributed to the resulting lower resistivity, higher barrier for electron leakage, and simultaneously reduced barrier for hole injection compared with the conventional EBL with constant Al composition.

Published in:

Photonics Journal, IEEE  (Volume:5 ,  Issue: 4 )