Cart (Loading....) | Create Account
Close category search window
 

Fast Constrained Least Squares Spectral Unmixing Using Primal-Dual Interior-Point Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chouzenoux, E. ; LIGM, Univ. Paris Est Marne-La-Vallee, Paris, France ; Legendre, M. ; Moussaoui, S. ; Idier, J.

Hyperspectral data unmixing aims at identifying the components (endmembers) of an observed surface and at determining their fractional abundances inside each pixel area. Assuming that the spectral signatures of the surface components have been previously determined by an endmember extraction algorithm, or to be part of an available spectral library, the main problem is reduced to the estimation of the fractional abundances. For large hyperspectral image data sets, the estimation of the abundance maps requires the resolution of a large-scale optimization problem subject to linear constraints such as non-negativity and sum less or equal to one. This paper proposes a primal-dual interior-point optimization algorithm allowing a constrained least squares estimation approach. In comparison with existing methods, the proposed algorithm is more flexible since it can handle any linear equality and/or inequality constraint and has the advantage of a reduced computational cost. It also presents an algorithmic structure suitable for a parallel implementation on modern intensive computing devices such as Graphics Processing Units (GPU). The implementation issues are discussed and the applicability of the proposed approach is illustrated with the help of examples on synthetic and real hyperspectral data.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.