By Topic

Verifying Keys through Publicity and Communities of Trust: Quantifying Off-Axis Corroboration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Osterweil, E. ; Verisign Labs., Reston, VA, USA ; Massey, D. ; McPherson, D. ; Lixia Zhang

The DNS Security Extensions (DNSSEC) arguably make DNS the first core Internet system to be protected using public key cryptography. The success of DNSSEC not only protects the DNS, but has generated interest in using this secured global database for new services such as those proposed by the IETF DANE working group. However, continued success is only possible if several important operational issues can be addressed. For example, .gov and .arpa have already suffered misconfigurations where DNS continued to function properly, but DNSSEC failed (thus, orphaning their entire subtrees in DNSSEC). Internet-scale verification systems must tolerate this type of chaos, but what kind of verification can one derive for systems with dynamism like this? In this paper, we propose to achieve robust verification with a new theoretical model, called Public Data, which treats operational deployments as Communities of Trust (CoTs) and makes them the verification substrate. Using a realization of the above idea, called Vantages, we quantitatively show that using a reasonable DNSSEC deployment model and a typical choice of a CoT, an adversary would need to be able to have visibility into and perform on-path Man-in-the-Middle (MitM) attacks on arbitrary traffic into and out of up to 90 percent of the all of the Autonomous Systems (ASes) in the Internet before having even a 10 percent chance of spoofing a DNSKEY. Further, our limited deployment of Vantages has outperformed the verifiability of DNSSEC and has properly validated its data up to 99.5 percent of the time.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )