Cart (Loading....) | Create Account
Close category search window

Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guang-Bin Huang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Babri, H.A.

It is well known that standard single-hidden layer feedforward networks (SLFNs) with at most N hidden neurons (including biases) can learn N distinct samples (xi,ti) with zero error, and the weights connecting the input neurons and the hidden neurons can be chosen “almost” arbitrarily. However, these results have been obtained for the case when the activation function for the hidden neurons is the signum function. This paper rigorously proves that standard single-hidden layer feedforward networks (SLFNs) with at most N hidden neurons and with any bounded nonlinear activation function which has a limit at one infinity can learn N distinct samples (xi,ti) with zero error. The previous method of arbitrarily choosing weights is not feasible for any SLFN. The proof of our result is constructive and thus gives a method to directly find the weights of the standard SLFNs with any such bounded nonlinear activation function as opposed to iterative training algorithms in the literature

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

Jan 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.