By Topic

Compensatory neurofuzzy systems with fast learning algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan-Qing Zhang ; Sch. of Comput. & Appl. Sci., Georgia Southwestern State Univ., Americus, GA, USA ; Kandel, A.

In this paper, a new adaptive fuzzy reasoning method using compensatory fuzzy operators is proposed to make a fuzzy logic system more adaptive and more effective. Such a compensatory fuzzy logic system is proved to be a universal approximator. The compensatory neural fuzzy networks built by both control-oriented fuzzy neurons and decision-oriented fuzzy neurons cannot only adaptively adjust fuzzy membership functions but also dynamically optimize the adaptive fuzzy reasoning by using a compensatory learning algorithm. The simulation results of a cart-pole balancing system and nonlinear system modeling have shown that: 1) the compensatory neurofuzzy system can effectively learn commonly used fuzzy IF-THEN rules from either well-defined initial data or ill-defined data; 2) the convergence speed of the compensatory learning algorithm is faster than that of the conventional backpropagation algorithm; and 3) the efficiency of the compensatory learning algorithm can be improved by choosing an appropriate compensatory degree

Published in:

Neural Networks, IEEE Transactions on  (Volume:9 ,  Issue: 1 )