By Topic

A direct adaptive neural-network control for unknown nonlinear systems and its application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. R. Noriega ; Dept. of Paper Sci., Univ. of Manchester Inst. of Sci. & Technol., UK ; Hong Wang

In this paper a direct adaptive neural-network control strategy for unknown nonlinear systems is presented. The system considered is described by an unknown NARMA model, and a feedforward neural network is used to learn the system. Taking the neural network as a neural model of the system, control signals are directly obtained by minimizing either the instant difference or the cumulative differences between a set point and the output of the neural model. Since the training algorithm guarantees that the output of the neural model approaches that of the actual system, it is shown that the control signals obtained can also make the real system output close to the set point. An application to a flow-rate control system is included to demonstrate the applicability of the proposed method and desired results are obtained

Published in:

IEEE Transactions on Neural Networks  (Volume:9 ,  Issue: 1 )