By Topic

Design and Testing of a Novel Inductive Pulsed Power Supply Consisting of HTS Pulse Power Transformer and ZnO-Based Nonlinear Resistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rui Wu ; Sch. of Electr. Eng., Southwest Jiaotong Univ., Chengdu, China ; Yu Wang ; Zhongming Yan ; Zhengyou He
more authors

Higher energy density makes inductive energy storage more promising than capacitive storage for pulsed power supplies in industrial and military fields. To realize high amplitude of pulsed current and relieve stress of opening switch, this paper proposes a novel inductive pulsed power supply consisting of high-temperature superconducting pulse power transformer and ZnO-based nonlinear resistor. First, working processes and laboratory setup are described in detail. Then, simulation using the software SIMPLORER is built to show major pulse characteristics and comparisons of two different nonlinear resistors. For verifying the feasibility of this mode, high-current testing is carried out and the results show that large amplitude of pulsed current 3 kA with energy transfer efficiency 60% is achieved, and the ZnO-based nonlinear resistor can help to limit the voltage of the opening switch to a small constant below its clamping value as current is interrupted.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 7 )