By Topic

Local Pinsker Inequalities via Stein's Discrete Density Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ley, C. ; Dept. de Math., Univ. libre de Bruxelles, Brussels, Belgium ; Swan, Y.

Pinsker's inequality states that the relative entropy between two random variables X and Y dominates the square of the total variation distance between X and Y. In this paper, we introduce generalized Fisher information distances and prove that these also dominate the square of the total variation distance. To this end, we introduce a general discrete Stein operator for which we prove a useful covariance identity. We illustrate our approach with several examples. Whenever competitor inequalities are available in the literature, the constants in ours are at least as good, and, in several cases, better.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 9 )