By Topic

Hierarchical Similarity Transformations Between Gaussian Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rigas, G. ; Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece ; Nikou, C. ; Goletsis, Y. ; Fotiadis, D.I.

In this paper, we propose a method to estimate the density of a data space represented by a geometric transformation of an initial Gaussian mixture model. The geometric transformation is hierarchical, and it is decomposed into two steps. At first, the initial model is assumed to undergo a global similarity transformation modeled by translation, rotation, and scaling of the model components. Then, to increase the degrees of freedom of the model and allow it to capture fine data structures, each individual mixture component may be transformed by another, local similarity transformation, whose parameters are distinct for each component of the mixture. In addition, to constrain the order of magnitude of the local transformation (LT) with respect to the global transformation (GT), zero-mean Gaussian priors are imposed onto the local parameters. The estimation of both GT and LT parameters is obtained through the expectation maximization framework. Experiments on artificial data are conducted to evaluate the proposed model, with varying data dimensionality, number of model components, and transformation parameters. In addition, the method is evaluated using real data from a speech recognition task. The obtained results show a high model accuracy and demonstrate the potential application of the proposed method to similar classification problems.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )