By Topic

Trinary-Projection Trees for Approximate Nearest Neighbor Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jingdong Wang ; Media Comput. Group, Microsoft Res. Asia, Beijing, China ; Naiyan Wang ; You Jia ; Jian Li
more authors

We address the problem of approximate nearest neighbor (ANN) search for visual descriptor indexing. Most spatial partition trees, such as KD trees, VP trees, and so on, follow the hierarchical binary space partitioning framework. The key effort is to design different partition functions (hyperplane or hypersphere) to divide the points so that 1) the data points can be well grouped to support effective NN candidate location and 2) the partition functions can be quickly evaluated to support efficient NN candidate location. We design a trinary-projection direction-based partition function. The trinary-projection direction is defined as a combination of a few coordinate axes with the weights being 1 or -1. We pursue the projection direction using the widely adopted maximum variance criterion to guarantee good space partitioning and find fewer coordinate axes to guarantee efficient partition function evaluation. We present a coordinate-wise enumeration algorithm to find the principal trinary-projection direction. In addition, we provide an extension using multiple randomized trees for improved performance. We justify our approach on large-scale local patch indexing and similar image search.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 2 )