Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Adaptive motion/force control of multiple manipulators with joint flexibility based on virtual decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Hong Zhu ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Zeungnam Bien ; De Schutter, J.

In this paper, a virtual decomposition-based adaptive motion/force control scheme is presented to deal with the control problem of coordinated multiple manipulators with flexible joints holding a common object in contact with the environment. The control scheme is essentially a generalized Newton-Euler approach in which the original system is virtually decomposed into several subsystems, including the held object, the rigid links, and the flexible joints, so that the control problem of the original system can be greatly simplified. An interesting result is that the dynamic coupling between every two physically connected subsystems is completely represented by the so-called virtual power flow (VPF) at the cutting point between them. The VPF takes a very simple form and is very easy to handle. Control design of the constraint/internal forces can be performed with respect to the held object. Asymptotic stability of the overall system is ensured in the sense of Lyapunov. Computer simulations of two manipulators transporting an object in the plane are given to show the validity of the proposed scheme

Published in:

Automatic Control, IEEE Transactions on  (Volume:43 ,  Issue: 1 )