Cart (Loading....) | Create Account
Close category search window
 

Application of model-matching techniques to feedforward active noise controller design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jwu-Sheng Hu ; Dept. of Control Eng., Nat. Chao-Tung Univ., Hsinchu, Taiwan ; Shiang-Hwua Yu ; Cheng-Shiang Hsieh

In this paper, three digital model-matching techniques in H2 , H, and l1 performance measures are applied to design digital feedforward controllers for active noise cancellation in ducts. Different measures account for different optimization objectives in terms of physical signals. The distributed nature and high-bandwidth requirements of the control system result in a large set of parameters in plant description and these design techniques proved to be useful in solving the controllers numerically. Experiments were conducted using a floating-point digital signal processor that produced broad-band noise reduction. Design variations and noise reduction effects in terms of human perception are also discussed. It is experimentally proved that using model-matching designs, the causality principle originally raised by Lueg (1936) does not have to be satisfied in order to actively reduce the noise level

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:6 ,  Issue: 1 )

Date of Publication:

Jan 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.